Suitable Partner Node Selection and Resource Allocation in Cooperative Wireless Communication Using the Trade-Off Game
نویسندگان
چکیده
The performance of any cooperative communication system depends largely on the selection of a proper partner. Another important factor to consider is an efficient allocation of resource like power by the source node to help it in forwarding information to the destination. In this paper, we look at the concepts of partner selection and resource (power) allocation for a distributed communication network. A type of non-cooperative game referred to as Trade-Off game is employed so as to jointly consider the utilities of the source and relay nodes, where in this case, the source is the node that requires help with forwarding of its information while the partner is the node that is willing to help in forwarding the source node’s information, but at a price. The approach enables the source node to maximize its utility by selecting a partner node based on (i) the proximity of the partner node to the source and destination nodes, and (ii) the price the partner node will charge for the help being rendered. Our proposed scheme helps the source locate and select the relay nodes at ‘better’ locations and purchase power optimally from them. It also aids the contending relay nodes maximize their own utilities as well by asking proper prices. Our game scheme is seen to converge to unique equilibrium. Keywords—Cooperative communication, game theory, node, power allocation, trade-off, utility.
منابع مشابه
Wireless sensor network design through genetic algorithm
In this paper, we study WSN design, as a multi-objective optimization problem using GA technique. We study the effects of GA parameters including population size, selection and crossover method and mutation probability on the design. Choosing suitable parameters is a trade-off between different network criteria and characteristics. Type of deployment, effect of network size, radio communication...
متن کاملA Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملThe Role of Regulatory in Price Control and Spectrum Allocation to Competing Wireless Access Networks
With the rapid growth of wireless access networks, various providers offer their services using different technologies such as Wi-Fi, Wimax, 3G, 4G and so on. These networks compete for the scarce wireless spectrum. The spectrum is considered to be a scarce resource moderated by the spectrum allocation regulatory (“regulatory” for short) which is the governance body aiming to maximize the socia...
متن کاملA Novel Collaborative Partner Selection algorithm Based on Nash Bargaining Game and Hungarian Method for Wireless Networks
—In this paper, the problem sharing resource among selfish nodes and cooperative partner selection are considered in wireless networks. Each wireless node can act as not only a source, but also a potential relay in the system model. The cooperative partners are willing to jointly adjust their power levels and channel bandwidth for cooperative relaying so that an extra rate increase can be achi...
متن کاملDecentralized Routing and Power Allocation in FDMA Wireless Networks based on H∞ Fuzzy Control Strategy
Simultaneous routing and resource allocation has been considered in wireless networks for its performance improvement. In this paper we propose a cross-layer optimization framework for worst-case queue length minimization in some type of FDMA based wireless networks, in which the the data routing and the power allocation problem are jointly optimized with Fuzzy distributed H∞ control strategy ....
متن کامل